Written

 MethodsDeveloping conceptual understanding

Use concrete objects, such as socks, coins, counter
simple arrays
büa
品品

Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher
... or in your
head

Just know it!	Count in multiples of twos, fives and tens Begin to recall and use x and \div facts for the $10 \times$ tables	Re and odd in
Ja		

Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs

5 frogs on $5 \times 3=15$

$5 \times 2=2 \times 5$

Build tables on counting stick

Link to repeated addition

Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot. Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts

Recall and use x and \div facts for the 2,5 and $10 \times$ tables, including recognising odd and even numbers

Multiplication Routeway

Write and calculate mathematical statements for $\mathrm{x} u$ uing the x tables they know progressing to formal written methods, still supported by visual representations and practical equipment

	Multiply 2-digit and 3-digit numbers by a 1-digit number using formal written layout		
If I know $10 \times 8=80$ then	43×6 by partitioning		
-	X	40	3
	6	240	18
So $13 \times 4=10 \times 4+3 \times 4$	$43 \times 6 \quad 40 \times 6=240$		
	$40 \times 6+3 \times 6 \times 6=18$		

I know $4 \times 6=24$, then 40×6 is ten times bigger $=240$
Use the Distributive Law to multiply numbers together: 13×16 by partitioning, multiplying together: 13×16 by partitioning, multiplying

Build tables on counting stick $\square \square \square \square \square \square \square \square \square \square$

 Other representations and structures can
nclude; bar models, arrays and place value mats
Resources can include: Numicon, counters, 100 squares and table squares

Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental methods progressing to formal written methods.

using mental methods progressing to formal written methods.Recognise and use factor pairs and commutativity in mental calculations	
Recall and use x and \div facts for the 3,4 and 8 times tables	Recall and use x and \div facts for the $6,7,9$, 11 and 12 times tables By the year end, recall \times and \div facts for ALL \times tables up to 12×12

Multiply numbers up to 4 digits by a 1- or 2-digit number using a formal written method, including long multiplication for 2-digit numbers.

Grid method linked to formal written method			
\times	200	40	3
30	6000	1200	90
6	1200	240	187290
$=\frac{1458}{\underline{8748}}+$			

Long multiplication:

Combine place value knowledge with known facts to solve problems involving number up to three decimal places.
If I know 4×6 then 0.4×6 is ten times smaller $=2.4$
. 4×0.6 is ten times smaller again $=0.24$

Multiply proper fractions and mixed numbers by whole numbers supported by equipment and diagrams (e.g. $2 / 3 \times 4,11 / 2 \times 3$) Multiply and divide numbers mentally drawing upon known facts. Multiply and divide whole numbers and those involving decimals by 10,100 and 1000 Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. Establish whether a number up to 100 is prime

Recall prime numbers up to 19. Know and use the vocabulary of prime numbers, prime factors and composite (non---prime) numbers. Recognise and use square numbers and cube numbers, and the

Multiply multi-digit numbers up to 4 digits by a two digit whole number using the formal written method of long multiplication

$$
5172
$$

$$
\begin{array}{r}
\times 38 \\
41376 \\
\hline 151
\end{array}
$$

155160
$+\underline{2}$
196536

Solve Multiplication and multi-step problems in contexts, deciding which operations and methods to use and why.

Examples:

There is space in the car park for 17 rows of 32 cars. How many cars can park?

Find the area of a swimming pool which is 25 m long and 7.5 m wide

Multiply simple pairs of proper fractions, writing the answer in its simplest form (e.g. $1 / 4 \times 1 / 2=1 / 8$)

Perform mental calculations, including with mixed operations and large numbers

Use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy

Multiply numbers given to 3 decimal places by 10,100 and 1000

Identify common factors, common multiples and prime numbers Recall and use equivalences between simple fractions, decimals and percentages, including in different contexts

